T

replication of the human foot is in the way of the sporting world that physically
challenged athletes compete with and against other physically challenged athletes. That
approach “levels the playing field,” you see, preventing “disabled” men and women
from being placed at unfair disadvantage in contests with “whole” or able-bodied competitors. Thus
we have the Paralympics, O&O Extremity Games, and various other events created especially for
amputees and other “less-than-fully-capable” contenders. Given the capabilities of prosthesis compo-
nency throughout history, that approach has made perfect sense. There’s no way a lower- or
upper-extremity amputee wearing even the best available prosthetic limb would have a chance against an otherwise-comparable “fully equipped” competitor. No way!
Or such was the conventional wisdom before Oscar Pistorius came along. Now, to borrow another sports cliché, It’s a whole new ball game.

Pistorius, 21, is the South African sprinter who runs with, and away from, some of the world’s elite runners despite the minor inconvenience of being a bilateral lower-limb amputee. Running on
Cheetah carbon-fibre prosthetic feet, he has toppled Paralympic records in various dash events and has announced his hope of mov-
ing up to better competition by running this year’s Beijing Olympics.

Ah, ah, ah...not so fast, young man. Never a concern before, the techno-
logical advances of prosthetic science in recent years now apparently constitute a
threat to the running establishment. Mr. Pistorius’s Cheetahs are nothing but
cheaters, opponents complain, springing him to an unfair advantage.

In early 2008, the International Asso-
ciation of Athletics Federations (IAAF),
track and field’s governing body, ruled
that his prostheses are in fact “technical
aids” that give Pistorius a clear advantage
over able-bodied runners and therefore he
is ineligible to compete in the Olympics.

Pistorius has appealed the ruling to the Court of Arbitration for Sport, the results of which were unannounced as this newsletter went to press. It is not our purpose to take a position on whether the South African sprinter should be allowed to run in the Olympics but rather to note the irony of
prosthetic legs now being considered too good a
replacement for lost human limbs. (Pistorius, incidentally, was born without fibulas and under-
went transtibial amputations at age 11 months.) Whether or not he ultimately runs in the
Olympics, his success marks a decisive turning point in the development of
prosthetic limbs. The IAAF tests that preceded
that body’s decision found that Pistorius’s pros-
theses enabled him to run at the same speed as able-bodied sprinters
with about 25 percent less energy expenditure and that the returned
energy they provided was close to three times higher than that of
the human ankle joint.

We have not yet reached the point that a prosthetic limb can out-
perform the human limb...but it’s noteworthy that some important people think so.

The ultimate in patient care

All Tech is committed to quality and professional patient care of the highest level. Whether we come to you or we see you in our offices, we believe that each patient can reach his or her maximum functional level through our goal- and team-oriented licensed practitioners.

Each patient is independently evaluated to determine special goals and needs. This approach allows us to provide the proper medical device, so that each patient can poten-
tially improve his or her daily living and quality of life. Our state-licensed practitioners are dedicated to not only enhancing the lives of our patients but also to helping our patients, their families, and the community understand the world of prosthetics and orthotics together.

We believe in building lifelong relationships, and we expect to provide outstanding patient care services.

The Utmost in Patient Care

All Tech is committed to quality and professional patient care of the highest level. Whether we come to you or we see you in our offices, we believe that each patient can reach his or her maximum functional level through our goal- and team-oriented licensed practitioners.

Each patient is independently evaluated to determine special goals and needs. This approach allows us to provide the proper medical device, so that each patient can poten-
tially improve his or her daily living and quality of life. Our state-licensed practitioners are dedicated to not only enhancing the lives of our patients but also to helping our patients, their families, and the community understand the world of prosthetics and orthotics together.

We believe in building lifelong relationships, and we expect to provide outstanding patient care services.

The Utmost in Patient Care

All Tech is committed to quality and professional patient care of the highest level. Whether we come to you or we see you in our offices, we believe that each patient can reach his or her maximum functional level through our goal- and team-oriented licensed practitioners.

Each patient is independently evaluated to determine special goals and needs. This approach allows us to provide the proper medical device, so that each patient can poten-
tially improve his or her daily living and quality of life. Our state-licensed practitioners are dedicated to not only enhancing the lives of our patients but also to helping our patients, their families, and the community understand the world of prosthetics and orthotics together.

We believe in building lifelong relationships, and we expect to provide outstanding patient care services.

The Utmost in Patient Care

All Tech is committed to quality and professional patient care of the highest level. Whether we come to you or we see you in our offices, we believe that each patient can reach his or her maximum functional level through our goal- and team-oriented licensed practitioners.

Each patient is independently evaluated to determine special goals and needs. This approach allows us to provide the proper medical device, so that each patient can poten-
tially improve his or her daily living and quality of life. Our state-licensed practitioners are dedicated to not only enhancing the lives of our patients but also to helping our patients, their families, and the community understand the world of prosthetics and orthotics together.

We believe in building lifelong relationships, and we expect to provide outstanding patient care services.

The Utmost in Patient Care

All Tech is committed to quality and professional patient care of the highest level. Whether we come to you or we see you in our offices, we believe that each patient can reach his or her maximum functional level through our goal- and team-oriented licensed practitioners.

Each patient is independently evaluated to determine special goals and needs. This approach allows us to provide the proper medical device, so that each patient can poten-
tially improve his or her daily living and quality of life. Our state-licensed practitioners are dedicated to not only enhancing the lives of our patients but also to helping our patients, their families, and the community understand the world of prosthetics and orthotics together.

We believe in building lifelong relationships, and we expect to provide outstanding patient care services.

The Utmost in Patient Care

All Tech is committed to quality and professional patient care of the highest level. Whether we come to you or we see you in our offices, we believe that each patient can reach his or her maximum functional level through our goal- and team-oriented licensed practitioners.

Each patient is independently evaluated to determine special goals and needs. This approach allows us to provide the proper medical device, so that each patient can poten-
tially improve his or her daily living and quality of life. Our state-licensed practitioners are dedicated to not only enhancing the lives of our patients but also to helping our patients, their families, and the community understand the world of prosthetics and orthotics together.

We believe in building lifelong relationships, and we expect to provide outstanding patient care services.
Choosing a foot component for a new prosthetic limb these days is no easy business. Once a simple choice among a handful of distinctly different designs, the broadened selection of a specific ankle-foot mechanism today has become a complex matter requiring knowledge of, and experience with, a steadily growing range now numbering more than 100 foot designs. Without question, “trial-fit” has taken hold in the once-staid prosthetics specialty as well-heeled U.S. and global manufacturers strive to “out-tech” each other to create the latest, greatest artificial leg. When that technology can be translated optimally to a particular individual’s anatomy, lifestyle and personal aspirations, there’s no telling how far the process will take us.

Nevertheless, selecting the “best” foot from the expanding list of contenders can be quite a challenge as time-honored favorites are regularly surpassed in technology, performance, and patient acceptance. It is the prosthetist’s role to remain current on the latest proven products and thereby help the prescribing physician, patient, caregivers, and others involved in the rehabilitation effort understand the benefits and drawbacks of the various feet under consideration.

The ankle-foot component is a critical determinant of prosthetic success. The closer it matches the abilities, environment and activities of the amputee, the better the outcome.

The Health Care Financing Administration’s system of functional levels governing Medicare reimbursement for lower-limb prosthetics (see page 3) provides a convenient framework for categorizing the various ankle-foot options by performance and patient type.

Level 1 - Household Ambulators

Amputees in this category tend to be older patients who have undergone amputation due to vascular insufficiency. They generally require safe, basic function and support for moving relatively short distances. The SACH (solid ankle, cushion heel) foot is general-

Level 2 - Limited Community Ambulators

Amputees whose functional potential fits in this category can benefit from more durable SACH foot models, non-articulating elastic keel feet, certain multiaxial designs, and feet incorporating lower-level energy-storing characteristics. Non-articulating elastic keel feet provide function similar to a SACH foot but are a bit more flexible, allowing the foot to adjust to varied walking conditions and conform to uneven surfaces.

Level 3 - Active Community Ambulators

Amputees within this classification have access to many advanced designs, which are more dynamic, assist toe-off, helping propel the leg into swing phase and reducing energy expenditure. These energy-storing-and-release or dynamic response feet address the needs of Level 3 patients as well. Reflecting its simplicity and comparision to the single-axis design, this foot is frequently selected for preparatory (temporo-)

Level 4 - High Activity — Child, Active Adult, Athlete

True Level 4 applications are typically high-tech, high-impact and high-cost. They are also the proving ground where the everyday sys-

Note to Our Readers

Mention of specific products in our newsletter neither constitu-
ent endorsement nor implies that we will recommend selection of those particular products for use with any particular patient or application. We offer this information to enhance professional and individual understanding of the orthotic and prosthetic disciplines and the experience and capabilities of our practice. We gratefully acknowledge the assistance of the following resources used in compiling this column:

- Bioquest Prosthetics, LLC
- College Park Industries
- Freedom Innovations
- Otto Bock Health Care
- Ortotec
- Prosthetics Today

Predicting Functional Outcomes

The U.S. Health Care Financing Administration (HCFA) has established a patient’s functional potential as the primary criterion for determination whether a particular lower-limb prosthetic compo-
nent will be approved for Medicare reimbursement.

An amputee’s predicted functional level, sometimes known as K level, is generally determined by the referring physician and prosthetist, taking into account (1) the patient’s history and (2) current status, including condition of the residual limb and other medical problems; and (3) his or her desire to ambulate.

Level 1: Amputee has the ability to potential or use to ambulate for transfers on level surfaces at a fixed cadence. Typical of the lim-

Level 2: Amputee has the ability or potential for ambulation with various degrees of support, to traverse 4- to 6" curbs, stairs and uneven surfaces. Typical of the unlimited household and limited community ambulator.

Level 3: Amputee has the ability or potential for ambulation with various degrees of support, to traverse 4" curbs, stairs and uneven surfaces. Typical of the community ambulator who has the ability to traverse most environmental barriers, but may have vocational, therapeutic or exercise activity that demands pros-

Level 4: Amputee has the ability or potential for prosthetic ambulation that exceeds basic ambulation skills, exhibiting high impact, stress or energy levels. Typical of the prosthetic demands of the child, active adult or athlete.
Replicating Functions of the Human Foot

The progression of prosthetic foot design throughout history has pursued one overarching objective: To replicate as closely as possible the biomechanical functions of the human foot. With a normal foot incorporating 26 bones, 33 joints and more than 100 muscles, tendons and ligaments, that would seem a nearly impossible task. Nevertheless, as illustrated in the inside pages of this newsletter, we've seen great advances toward that goal in recent years...and the innovation push continues. We'll likely have seen great advances toward that goal in recent years and the innovation push continues. We'll likely never perfectly replace the marvelous natural foot, but we're getting considerably closer.

Among the latest advances is an intriguing new foot concept more than five years in the making. The PerfectStride™ II was engineered around detailed engineering analysis of how the human below-knee complex functions during gait and how existing prosthetic feet measure up in replacing that function. The new design consists of a titanium calf shank and ankle coil coupled to a carbon graphite foot keel, which interact to deliver triplanar reaction to gait forces much as the human foot does.

At heel strike, these components combine to absorb compression shock and store momentum load, which they sequentially return during foot flat, late stance and toe off, propelling the prosthetic limb forward and upward. The foot's creators commissioned gait studies at Stanford University, the University of Southern California and Rancho Los Amigos National Rehabilitation Center, which document that, as compared with other leading prosthetic feet, the PerfectStride™ II is relatively tall build height makes it best-suited for patients with mid-transitibial deficiencies and higher; thus, most lower-extremity amputees may benefit from this design including transfemoral, knee and hip disarticulation, and hemipelvectomy patients. The foot is rated for patients at Functional Levels K3 and K4.

PerfectStride II

What's New

Powered Foot Components

It is somewhat surprising that with powered hand, wrist and elbow components available for upper-limb prostheses for many years, similar technology did not enter the mainstream of lower-limb prosthetics until just 2007 with the introduction of the Proprio™ Foot. Apparently it’s now an idea whose time has come, for another powered foot system is on the near horizon.

The Proprio Foot was named for its ability to mimic the body’s ability to “sense” the foot’s location in space—i.e., proprioception—enabling it to identify inclines and stairs after one step, then position the powered ankle appropriately for succeeding steps. This active ankle motion also allows wearers to sit down or rise from a chair more easily.

The PowerFoot One™, an actively powered prosthetic ankle based on research at MIT’s Media Lab and developed with partial funding from the Veteran’s Administration and U.S. Army, will make its debut in mid-2008. We will address this new foot in a future issue.

Proprio Foot

Is He Too Fast for the Olympics?

It is the way of the sporting world that physically challenged athletes compete with and against other physically challenged athletes. That approach “levels the playing field,” you see, preventing “disabled” men and women from being placed at unfair disadvantage in contests with “whole” or able-bodied competitors. Thus we have the Paralympics, O&K Extreme Games, and various other events created especially for amputees and other “less-than-fully-capable” competitors.

Given the capabilities of prosthetic components throughout history, that approach has made perfect sense. There’s no way a lower- or upper-extremity amputee wearing even the best available prosthetic limb would have a chance against an otherwise comparable “fully equipped” competitor. No way!

Or such was the conventional wisdom before Oscar Pistorius came along. Now, to borrow another sports cliché, It’s a whole new ball game.

Pistorius, 21, is the South African sprinter who runs with, and away from, some of the world’s elite runners despite the minor inconvenience of being a bilateral lower-limb amputee. Running on Cheeta carbon-fibre prosthetic feet, he has topped Paralympic records in various dash events and has announced his hope of moving up to better competition by running this year’s Beijing Olympics.

Ah, ah, ah... not so fast, young man. Never a concern before, the technological advances of prosthetic science in recent years now apparently constitute a threat to the running establishment. Mr. Pistorius’s Cheetahs are nothing but cheaters, opponents complain, springing him to an unfair advantage.

In early 2008, the International Association of Athletics Federations (IAAF), track and field’s governing body, ruled that his prostheses are in fact “technical aids” that give Pistorius a clear advantage over able-bodied runners and therefore he is ineligible to compete in the Olympics.

Pistorius has appealed the ruling to the Court of Arbitration for Sport, the results of which were unannounced as this newsletter went to press. It is not our purpose to take a position on whether Oscar Pistorius should be allowed to run in the Olympics but rather to note the irony of prosthetic legs now being considered too good a replacement for lost human limbs. (Pistorius, incidentally, was born without fibulas and underwent transtibial amputations at age 11 months.)

Whether or not he ultimately runs in the Olympics, Oscar Pistorius’s success marks a decisive turning point in the development of prosthetic limbs. The IAAF tests that preceded body’s decision found that Pistorius’s prostheses enabled him to run at the same speed as able-bodied sprinters with about 25 percent less energy expenditure and that the returned energy they provided was close to three times higher than that of the human ankle joint.

We have not yet reached the point that a prosthetic limb can outperform the human limb...but it’s noteworthy that some important people think so.

The Utmost in Patient Care

All Tech is committed to quality and professional patient care of the highest level. Whether we come to you or we see you in our offices, we believe that each patient can reach his or her maximum functional level through our goal- and team-oriented licensed practitioners. Each patient is independently evaluated to determine special goals and needs. This approach allows us to provide the proper medical device, so that each patient can potentially improve his or her daily living and quality of life. Our state-licensed practitioners are dedicated to not only enhancing the lives of our patients but also to helping our patients, their families, and the community understand the world of prosthetics and orthotics together.

We believe in building life-long relationships, and we expect to provide outstanding patient care services.